The State Museum of Natural History Stuttgart (SMNS)

- Research Institution “Am Löwentor” and “Schloss Rosenstein”
The State Museum of Natural History Stuttgart (SMNS) is dedicated to the scientific study and understanding of the system Earth based on collections of organic and inorganic natural objects. The mission of the museum is to:

- collect, document, and archive objects from all fields of natural history
- actively contribute to basic and applied high level research in the biological and earth sciences
- disseminate scientific knowledge about natural history

The institution was formally established in 1791 through a decree by Carl Eugen, Duke of Württemberg, and ranks among the oldest and most prominent natural history museums in Europe. With its collections, libraries, laboratories, and other research facilities, the museum comprises two large buildings both with extensive exhibition and storage areas.

The museum is supported as a public institution for research and education under the Ministry for Sciences, Research and Arts of the State of Baden-Württemberg. It employs more than 150 staff to execute its manifold tasks including expert advice for the “Convention on International Trade in Endangered Species of Wild Fauna and Flora” (CITES) and fossil conservation.

Ongoing excavations in the Middle Triassic yield new material every year. In 2006, a small ancestor of crocodiles and birds was discovered among various other finds of new species. These deposits rank among the richest in the world.
The SMNS collections hold more than 11 million specimens and other natural objects as well as numerous associated data on taxonomy, genetics, ecology, and geography. Together these comprehensive records and archives of life on Earth and its history constitute a large-scale research infrastructure used by research scientists and the international community.

Increasingly, collection information is made available digitally and in online databases and contributes to international information systems such as the Global Biodiversity Information Facility (GBIF: www.gbif.org).

The oldest parts of the collection date back to the 16th century, and were originally incorporated in the private “Cabinet of Arts and Natural Curiosities” of the Dukes of Württemberg, which later gave rise to the State Museum of Natural History Stuttgart.

Today, the biological and palaeontological collections still have a strong regional focus as well as a worldwide dimension. The collection size is constantly growing due to project-related field work, special acquisitions and bequests. Every year more than 200 foreign scientists visit the museum’s collections for comparative studies.

Well preserved lobster from the Upper Jurassic of Nusplingen (Swabian Alb). This was a predatory species adapted for hunting small animals. Today this lobster group is restricted to deep-sea environments.

The Tasmanian Tiger was the largest carnivorous marsupial of modern times. The last member died in the Zoo in 1936; this species is officially classified as extinct. Mounts in exhibitions are all mounts in exhibitions are all.

Fossil insect-larva of a praying mantis in Dominican Amber from the Oligocene-Miocene. The amber collection (35,000 inclusions from different localities) ranks among the most important in Europe.

The oldest parts of the collection date back to the 16th century, and were originally incorporated in the private “Cabinet of Arts and Natural Curiosities” of the Dukes of Württemberg, which later gave rise to the State Museum of Natural History Stuttgart.

Today, the biological and palaeontological collections still have a strong regional focus as well as a worldwide dimension. The collection size is constantly growing due to project-related field work, special acquisitions and bequests. Every year more than 200 foreign scientists visit the museum’s collections for comparative studies.

Well preserved lobster from the Upper Jurassic of Nusplingen (Swabian Alb). This was a predatory species adapted for hunting small animals. Today this lobster group is restricted to deep-sea environments.

The Tasmanian Tiger was the largest carnivorous marsupial of modern times. The last member died in the Zoo in 1936; this species is officially classified as extinct. Mounts in exhibitions are all.

Fossil insect-larva of a praying mantis in Dominican Amber from the Oligocene-Miocene. The amber collection (35,000 inclusions from different localities) ranks among the most important in Europe.
The SMNS collections hold more than 11 million specimens and other natural objects as well as numerous associated data on taxonomy, genetics, ecology, and geography. Together these comprehensive records and archives of life on Earth and its history constitute a large-scale research infrastructure used by research scientists and the international community.

Increasingly, collection information is made available digitally and in online databases and contributes to international information systems such as the Global Biodiversity Information Facility (GBIF: www.gbif.org).

The oldest parts of the collection date back to the 16th century, and were originally incorporated in the private “Cabinet of Arts and Natural Curiosities” of the Dukes of Württemberg, which later gave rise to the State Museum of Natural History Stuttgart. Today, the biological and palaeontological collections still have a strong regional focus as well as a worldwide dimension. The collection size is constantly growing due to project-related field work, special acquisitions and bequests. Every year more than 200 foreign scientists visit the museum’s collections for comparative studies.

Well preserved lobster from the Upper Jurassic of Nusplingen (Swabian Alb). This was a predatory species adapted for hunting small animals. Today this lobster group is restricted to deep-sea environments.

The Tasmanian Tiger was the largest carnivorous marsupial of modern times. The last member died in the zoo in 1936; this species is officially classified as extinct. Mounts in exhibitions are all that remain.

Fossil insect-larva of a praying mantis in Dominican Amber from the Oligocene-Miocene. The amber collection (35,000 inclusions from different localities) ranks among the most important in Europe.
The SMNS currently employs around 70 scientific and technical staff. Scientists pursue research in earth history, botany, entomology, and zoology to unravel questions of the earth's biodiversity. They focus on evolution, phylogeny, palaeo-)biogeography, (palaeo-)ecology, and stratigraphy, and endorse applied and biodiversity informatics. Innovative information technology is used for taxonomic, phylogenetic, and biogeographic studies, primarily through database applications and other web-based developments.

The classification of organisms and the investigation of their interrelationships form the centre of the museum’s research. Collection studies of visiting scientists are encouraged as well as collaborative research. Loans are welcomed. Many projects are undertaken in collaboration with international partners, including contributions to larger scale projects such as the European Distributed Institute of Taxonomy (EDIT) and the Global Biodiversity Information Facility (GBIF).

Research results are published in renowned expert journals and in popular media. Research funding is obtained from various sources, e.g., the state government, federal ministries, (inter-)national organisations, and private donors.

The Bryophyte Flora of Baden-Württemberg focuses on the morphology, ecology, distribution, and conservation of all species of mosses, liverworts, and hornworts in Germany. The work is illustrated by maps and many colour photos.

Palaeontological fieldwork is performed in world-famous excavation sites of Germany and abroad. This constitutes the basis for the comprehensive understanding of ecosystem evolution in earth history.

SMNS researchers participated in the scientific expedition SANTO 2006, documenting the entire fauna and flora of Espiritu Santo, Vanuatu. This joint effort of more than 100 participants from 15 countries was financially supported by EDIT.
The SMNS currently employs around 70 scientific and technical staff. Scientists pursue research in earth history, botany, entomology, and zoology to unravel questions of the earth’s biodiversity. They focus on evolution, phylogeny, (palaeo-)biogeography, (palaeo-)ecology, and stratigraphy, and endorse applied and biodiversity informatics. Innovative information technology is used for taxonomic, phylogenetic, and biogeographic studies, primarily through database applications and other web-based developments.

The classification of organisms and the investigation of their interrelationships form the centre of the museum’s research. Collection studies of visiting scientists are encouraged as well as collaborative research. Loans are welcomed. Many projects are undertaken in collaboration with international partners, including contributions to larger scale projects such as the European Distributed Institute of Taxonomy (EDIT) and the Global Biodiversity Information Facility (GBIF).

Research results are published in renowned expert journals and in popular media. Research funding is obtained from various sources, e.g., the state government, federal ministries, (inter-)national funding agencies, trusts, and private donors.

The Bryophyte Flora of Baden-Württemberg focuses on the morphology, ecology, distribution, and conservation of all species of mosses, liverworts, and hornworts in Germany. The work is illustrated by maps and many colour photos.

Palaeontological fieldwork is performed in world-famous excavation sites of Germany and abroad. This constitutes the basis for the comprehensive understanding of ecosystem evolution in earth history.

The SMNS researchers participated in the scientific expedition SANTO 2006, documenting the entire fauna and flora of Espiritu Santo, Vanuatu. This joint effort of more than 100 participants from 15 countries was financially supported by EDIT.
Homo steinheimensis, the skull of a ca. 300,000 years old human, represents the crown jewel of the museum. It was excavated in 1933 from fluviatile deposits of the river Murr at the town Steinheim an der Murr.

Palaeontology has a long tradition at the museum, reaching back to the early days of fossil collecting in Germany. The museum houses one of the largest palaeontological collections in Europe, with a regional emphasis on Triassic-Jurassic, Paleogene-Neogene, and important fossils related to human evolution. However, it also includes a large body of specimens from overseas (e.g., ammonites, insects, reptiles, mammals, and a rich amber collection).

Research covers all fields of palaeozoology and palaeobotany, especially taxonomy, morphology, and phylogeny, functional morphology, evolutionary biology, palaeoecology, and stratigraphy. Projects are performed in collaborations with institutions worldwide.

Research foci are the terrestrial and marine Triassic ecosystems (Kupferzell, Trossingen), marine Jurassic deposits (Holzmaden, Nusplingen), fossil insects, as well as Paleo- and Neogene ecosystems (Ulm, Langenau, Randecker Maar, Steinheim, Höwenegg, marine and freshwater Molasse, fissure fillings of the Swabian Alb).

Aesculus velitzelosii. The excavation site of Willershausen near Göttingen bears the richest Upper Pliocene plant record in Europe. The SMNS houses a large collection of fossil plants and animals from this site.
Palaeontology has a long tradition at the museum, reaching back to the early days of fossil collecting in Germany. The museum houses one of the largest palaeontological collections in Europe, with regional emphasis (Triassic-Jurassic, Palaeogene-Neogene) and important fossils related to human evolution. However, it also includes a large body of specimens from overseas (e.g., ammonites, insects, reptiles, mammals, and a rich amber collection).

Research covers all fields of palaeozoology and palaeobotany, especially taxonomy, morphology, and phylogeny, functional morphology, evolutionary biology, palaeoecology, and stratigraphy. Projects are performed in collaborations with institutions worldwide.

Research foci are the terrestrial and marine Triassic ecosystems (Kupferzell, Trossingen), marine Jurassic deposits (Holzmaden, Nusplingen), fossil insects, as well as Paleo- and Neogene ecosystems (Ulm, Langenau, Randecker Maar, Steinheim, Höwenegg, marine and freshwater Molasse, fissure fillings of the Swabian Alb).

Scientific excavations of the Upper Jurassic Nusplingen Lithographic Limestone in the western part of the Swabian Alb by a team of the museum. Already more than 350 fossil taxa have been recorded.

Homo steinheimensis, the skull of a ca. 300,000 years old human, represents the crown jewel of the museum. The excavation site of Willershausen near Göttingen bears the richest Upper Pliocene plant record in Europe. The SMNS houses a large collection of fossil plants and animals from this site.

Aesculus velitzelosii. The excavation site of Willershausen near Göttingen bears the richest Upper Pliocene plant record in Europe. The SMNS houses a large collection of fossil plants and animals from this site.
The botany department is the central institution for floristic mapping of Baden-Württemberg. A data bank of more than 1,000,000 sets consists of herbarium specimens and field records. It is used for nature conservation measurements and biogeographic studies. With these data, a research project on the impacts of climatic changes on the flora is performed in cooperation with government institutions. Distribution maps are available online.

Botanical research embraces both taxonomic and systematic studies: a molecular study on island biogeography deals with the long-range dispersal and the colonisation of plant species. Other main projects are taxonomic and systematic revisions of plant groups and studies on the micorrhizae of liverworts in Central Europe and South America.

The department houses a herbarium with 1,000,000 specimens, of which 680,000 are flowering plants and ferns, 140,000 mosses and liverworts, 85,000 lichens, 10,000 algae and 100,000 fungi. The oldest specimens date back to the year 1743 and were collected during Gmelin's Kamchatka expedition. The herbarium is the most important facility for studies on the history of botany in Baden-Württemberg.

The project combining conventional methods with molecular analysis shall revise the taxonomy of the considerably diverse genus Eryngium, which consists of about 250 species worldwide. The project "floristic mapping of Baden-Württemberg" inventories the whole flora of the region. In this example, Arnica montana shows a conspicuous decline in its distribution during the last decades.

The biogeographic relations of the flora in the Socotra archipelago are reconstructed using molecular methods. About 30% of Socotra's vascular plants are endemic including the cucumber tree Dendrocytos socotrana.
The botany department is the central institution for floristic mapping of Baden-Württemberg. A data bank of more than 1,000,000 sets consists of herbarium specimens and field records. It is used for nature conservation measurements and biogeographic studies. With these data, a research project on the impacts of climatic changes on the flora is performed in cooperation with government institutions. Distribution maps are available online.

Botanical research embraces both taxonomic and systematic studies: a molecular study on island biogeography deals with the long-range dispersal and the colonisation of plant species. Other main projects are taxonomic and systematic revisions of plant groups and studies on the mycorrhizae of liverworts in Central Europe and South America.

The department houses a herbarium with 1,000,000 specimens, of which 680,000 are flowering plants and ferns, 140,000 mosses and liverworts, 85,000 lichens, 10,000 algae and 100,000 fungi. The oldest specimens date back to the year 1743 and were collected during Gmelin’s Kamchatka expedition. The herbarium is the most important facility for studies of the history of botany in Baden-Württemberg.

Eryngium alpinum. A project combining conventional methods with molecular analysis shall revise the taxonomy of the considerably diverse genus Eryngium, which consists of about 250 species worldwide.

The project “floristic mapping of Baden-Württemberg” inventories the whole flora of the region. In this example, Arnica montana shows a conspicuous decline in its distribution during the last decades.

The biogeographic relationships of the flora in the Socotra archipelago are reconstructed using molecular methods. About 30% of Socotra’s vascular plants are endemic including the cucumber tree Dendrosicyos socotrana.
Entomology deals with the largest part of all organisms, comprising the more than 1 million insect and other arthropod species known, and several million species still to be discovered. Entomological research at SMNS hence focuses on the most species-rich insect groups, such as Coleoptera (beetles), Diptera (flies), Hymenoptera (ants, bees, and wasps), and Lepidoptera (butterflies and moths), and also on aquatic insects (mayflies, stoneflies, and dragonflies).

Taxonomy, the classification of known and the description of new species, constitutes a core field of research in entomology. Projects include faunistic surveys, species catalogues, taxonomic revisions, field guides, and monographs for groups and regions of particular interest, for which the entomological collections present the essential research base.

Phylogeny, the reconstruction of the evolutionary history of a group based on comparative studies of its member taxa, is another research focus in entomology. Following the tradition established by Willi Hennig at the museum in the 1960s, the current studies rely both on comparative morphology and modern molecular methods.

Coleoptera research focuses on the fauna of Asian and African sites. The local fauna is investigated by members of the Entomological Society Stuttgart (founded 1869), which also organises the annual German Coleopterists Meeting.

Projects like GBIF and EDIT promote digitalisation of species data from collections and thus enable global dissemination of primary biodiversity data and easy access for collaborating and comprehensive analysis.

Willi Hennig was a leading scientist at SMNS from 1963 until his sudden death in 1976. He is considered the founder of phylogenetic systematics and revolutionised this research area with his studies and new theories.
Entomology deals with the largest part of all organisms, comprising the more than 1 million insect and other arthropod species known, and several million species still to be discovered. Entomological research at SMNS hence focuses on the most species-rich insect groups, such as Coleoptera (beetles), Diptera (flies), Hymenoptera (ants, bees, and wasps), and Lepidoptera (butterflies and moths), and also on aquatic insects (mayflies, stoneflies, and dragonflies).

Taxonomy, the classification of known and the description of new species, constitutes a core field of research in entomology. Projects include faunistic surveys, species catalogues, taxonomic revisions, field guides, and monographs for groups and regions of particular interest, for which the entomological collections present the essential research base.

Phylogeny, the reconstruction of the evolutionary history of a group based on comparative studies of its member taxa, is another research focus in entomology. Following the tradition established by Willi Hennig at the museum in the 1960s, the current studies rely both on comparative morphology and modern molecular methods.
The amphibians and reptiles of the Venezuelan sandstone table mountains remain poorly known. The mountains are remnants of an extensive plateau, which covered a part of the Guianan Region during the Tertiary period.

Zoological research at SMNS deals with vertebrates (amphibians, reptiles, fishes, birds, and mammals) and malacology (snails and bivalves). It focuses on biodiversity including checklists and Red Lists of endangered species, biogeography, ecological studies, and evolution. Identification and monitoring of fauna is performed in Baden-Württemberg, other parts of Germany, Europe, and overseas.

The origin of the zoological collections is strongly related to expeditions in former times. The historical collections have a key function for the understanding of biosphere changes. Zoology owns one of the largest and most important collections in the world, e.g., consisting of more than half of all recent bird taxa and one-third of mammalian taxa.

The scientists collaborate worldwide for selection and management of conservation areas, e.g., with Venezuela, Peru, and Madagascar. The zoologists support government agencies and non-governmental organizations by providing information on ecosystems and species protection. They advise on diversity, behavior, and interaction between species and ecosystems as well as on conservation issues and threats.

One of the key research areas in ornithology includes a study of a rainforest in Eastern Madagascar. Birds are being captured and ringed at five sites that experience a varying degree of human interference.

The landsnail Orcula dolium lives on calcareous rocks; in Germany it is restricted to alpine environments. Recently the alpine mollusc species are threatened by habitat loss due to climatic change.
The amphibians and reptiles of the Venezuelan sandstone table mountains remain poorly known. The mountains are remnants of an extensive plateau, which covered a part of the Guianan Region during the Tertiary period.

Zoological research at SMNS deals with vertebrates (amphibians, reptiles, fishes, birds, and mammals) and malacology (snails and bivalves). It focuses on biodiversity including checklists and Red Lists of endangered species, biogeography, ecological studies and evolution. Identification and monitoring of fauna is performed in Baden-Württemberg, other parts of Germany, Europe and overseas.

The origin of the zoological collections is strongly related to expeditions in former times. The historical collections have a key function for the understanding of biosphere changes. Zoology owns one of the largest and most important collections in the world, e.g., consisting of more than half of all recent bird taxa and one-third of mammalian taxa.

The scientists collaborate world wide for selection and management of conservation areas, e.g., with Venezuela, Peru, and Madagascar. The zoologists support government agencies and non-governmental organisations by providing information on ecosystems and species protection. They advise on diversity, behaviour, and interaction between species and ecosystem as well as on conservation issues and threats.
The museum has special facilities for palaeontological preparation and modelling, etching, screen washing and sandblasting, the processing of amber fossils and cuticle analysis. Stereo and light microscopes (interference and auto-montage system) plus a scanning electron microscope are also available.

Biological facilities include a preparation room for large species and special laboratories for maceration and anatomical preparation. A degreasing unit and a nitrogen chamber to kill off parasites, larvae, and eggs, are available in-house and for other institutions. The molecular systematics laboratory is equipped for the isolation of nucleic acids, PCR, cloning, fingerprint methods like RAPDs and ISSRs, and phylogenetic analyses.

The library contains 100,000 volumes and 1,600 current journals with a focus on taxonomy, systematics, and evolution. The museum publishes two scientific journals, the Stuttgart State Museum Contributions to Natural History A (Biology) and B (Geology and Palaeontology; titled Palaeodiversity from 2008 onwards). Gatherings take place in modern auditoriums and meeting facilities which provide room for conferences with up to 200 participants.

The spacious auditorium is used for many occasions, in this case the ‘University for Children’ event. Research staff informs about popular science topics and answers questions that children are curious about.

The electron microscope facilitates phylogenetic examinations by uncovering essential details. This REM picture of the ventral side of a thallose liverwort (Metzgeria leptoneura) shows the structure of sexual organs and attached trichomes.

Books and journals are available in the library and free to use for visiting scientists. The library includes various precious historical books like Cuvier’s "Recherches sur les ossemens fossiles" and others.
The museum has special facilities for palaeontological preparation and modelling, etching, screen washing and sandblasting, the processing of amber fossils and cuticle analysis. Stereo and light microscopes (interference and auto-montage system) plus a scanning electron microscope are also available.

Biological facilities include a preparation room for large species and special laboratories for maceration and anatomical preparation. A degreasing unit and a nitrogen chamber to kill off parasites, larvae, and eggs, are available in-house and for other institutions. The molecular systematics laboratory is equipped for the isolation of nucleic acids, PCR, cloning, fingerprint methods like RAPDs and ISSRs, and phylogenetic analyses.

The library contains 100,000 volumes and 1,600 current journals with focus on taxonomy, systematics, and evolution. The museum publishes two scientific journals, the Stuttgart State Museum Contributions to Natural History A (Biology) and B (Geology and Palaeontology; titled Palaeodiversity from 2008 onwards). Gatherings take place in modern auditory and meeting facilities which provide room for conferences with up to 200 participants.

The electron microscope facilitates phylogenetic examinations by uncovering essential details. This REM picture of the ventral side of thalllose liverwort (Metzgeria leptoneura) shows the structure of sexual organs and attached trichomes.
Education of scientists and students is a regular activity at SMNS. Graduate and postdoctoral students are trained, and MSc and PhD theses are based on the museum’s collections and supervised by staff. In collaboration with the universities Hohenheim, Stuttgart, and Tübingen, courses in systematics are offered at the museum, and SMNS researchers teach various courses.

Technical skills and practical experiences are also part of the museum’s capacity building efforts. Special courses are given on topics ranging from excavation and palaeontological preparation methods and taxidermy to digital imaging techniques.

18 trainee positions are available on a 2-year term, to provide training on the job for young scientists and other museum professions.

The SMNS collaborates with partner institutions and is a member in DNFS, CETAF, and other networks. It also takes part in national and international exchange programs for students and technical staff, as well as capacity building efforts in the framework of collaborative projects abroad.

SMNS scientists teach technical and scientific trainees in the correct handling of collections. Specimens have to be selected, sorted, identified and documented; specific labels name the species, location, and date.

University students visit an Upper Jurassic excavation during a field trip. A scientist and a volunteer of the museum are explaining the geology and palaeoenvironment of this site to the students.

Expertise on the biology of organisms and taxonomy is in decline. Scientists at SMNS are specialists in these research areas and cooperate with universities to pass on their unique knowledge to future generations of scientists.
Education of scientists and students is a regular activity at SMNS. Graduate and postdoctoral students are trained, and MSc and PhD theses are based on the museum’s collections and supervised by staff. In collaboration with the universities Hohenheim, Stuttgart, and Tübingen, courses in systematics are offered at the museum, and SMNS researchers teach various courses. They also regularly offer field excursions.

Teaching technical skills and practical experiences are also part of the museum’s capacity building efforts. Special courses are given on topics ranging from excavation and palaeontological preparation methods and taxidermy to digital imaging techniques.

18 trainee positions are available on a 2-year term, to provide training on the job for young scientists and other museum professions.

The SMNS collaborates with partner institutions and is a member in DNFS, CETAF, and other networks. It also takes part in national and international exchange programs for students and technical staff, as well as capacity building efforts in the framework of collaborative projects abroad.
The SMNS is a leading institution in public education. Visitors can enjoy the past and modern natural world in two exhibition buildings: “Am Löwentor” visualizes the Mesozoic and Cenozoic world based on unique fossils from south-western Germany; “Schloss Rosenstein” hosts the biological exhibition focusing on evolution and modern ecosystems. The permanent exhibitions are complemented by temporary ones (either developed in-house or loaned from other institutions).

More than 200,000 guests come to see the exhibitions or to take part in specific projects every year. Thus, the museum is one of the most frequently visited cultural institutions in the state of Baden-Württemberg. Tours, campaigns, and audio guides reach a highly diverse audience. Among them, programs for schools, families, and adults are of high relevance. The extensive education program, presentations, and days of action like the “museum night” or the “open house” complement each other.

Relevant scientific topics are published in the popular journal “Stuttgarter Beiträge zur Naturkunde C”. The annual report presents current research and collection related projects. Researchers also provide assistance to public media companies for the production of natural history documentaries.

Modern information facilities such as touch-screens allow the visitors to explore playfully the exhibitions. Pedagogically trained experts and researchers work closely together to provide simple and profound information.

Museum docents aim to intrigue children for nature and historic fossils. Guided tours for children of all ages, school classes, undergraduates, students, and adults as well as training of teachers complete the educational program.

- EXHIBITIONS
- TOURS and TALKS
- OPEN HOUSE
- SPECIAL EVENTS
- SCIENCE EXPERIENCE
- POPULAR MEDIA
The SMNS is a leading institution in public education. Visitors can enjoy the past and modern natural world in two exhibition buildings: “Am Löwentor” visualizes the Mesozoic and Cenozoic world based on unique fossils from south-western Germany; “Schloss Rosenstein” hosts the biological exhibition focusing on evolution and modern ecosystems. The permanent exhibitions are complemented by temporary ones (either developed in-house or loaned from other institutions).

More than 200,000 guests come to see the exhibitions or to take part in specific projects every year. Thus, the museum is one of the most frequently visited cultural institutions in the state of Baden-Württemberg. Tours, campaigns, and audio guides reach a highly diverse audience. Among them, programs for schools, families, and adults are of high relevance. The extensive education program, presentations, and days of action like the “museum night” or the “open house” complement each other.

Relevant scientific topics are published in the popular journal “Stuttgarter Beiträge zur Naturkunde C”. The annual report presents current research and collection related projects. Researchers also provide assistance to public media companies for the production of natural history documentaries.
The State Museum of Natural History Stuttgart (SMNS)

Research Institution “Am Löwentor” and “Schloss Rosenstein”

Address
Staatliches Museum für Naturkunde
Rosenstein 1
70191 Stuttgart
Germany

Phone +49 711 89 36-0
Fax +49 711 89 36-100
www.naturkundemuseum-bw.de

How to find us
You can access an interactive route planner at
www.naturkundemuseum-bw.de/stuttgart

By car
Parking opportunities are limited at SMNS.
Please use public transport if possible.

Public transport
Museum am Löwentor:
S 4,5 or 6 to stop “Nordbahnhof”
U15 to stop “Nordbahnhof”
U13 to stop “Löwentor”

Schloss Rosenstein:
U1,2 or 14 to stop “Mineralbäder”
S1,2 or 3 and DB-Train to
train station “Bad Cannstatt”
15 min. walk from the train station

Photo credits
P. Arnaud Jr., B. Büche, G. Falkner, J. Gritzka [19], R. Harling [5], J. Holstein [3],
S. Kaiser [2], S. Leidenroth, R. Lillich, H. Lumpe, K. Marquart [2], M. Nebel,
M. Pallmann, M. Rasser, J. Reibnitz [2], D. Schlee, A. Schlüter [2], U. Schmid,
R. Schoch, G. Schweigert [3], A. Staniczek, A. Steiner [2], U. Stübner [2],
M. Thiv, F. Tzerikiantz, A. Wörz [2], F. Woog

Affiliations