The terrestrial isopods (Isopoda: Oniscoidea) of Greece.

22nd contribution:
Genus Monocyphoniscus (Trichoniscidae)

HELMUT SCHMALFUSS

Abstract

The terrestrial isopod Monocyphoniscus bulgaricus Strouhal, 1939 is redescribed and illustrated. The following taxa are synonymized with M. bulgaricus: Kosswigius (= Monocyphoniscus) caniensis Vandel, 1958 from Crete, Kosswigius delattini Verhoeff, 1941 and Kosswigius bilselii Verhoeff, 1941, both from northwestern Turkey. New records from northeastern Greece and the Peloponnes are presented, all records of the species are summarized and mapped. The systematic situation of the genus Monocyphoniscus is discussed.

Keywords: Isopoda, Oniscoidea, Monocyphoniscus, Greece, new synonyms.

Zusammenfassung


Contents

1 The genus Monocyphoniscus Strouhal, 1939 ............................................. 2
2 Monocyphoniscus bulgaricus Strouhal, 1939 ............................................. 3
3 Remarks ......................................................................................... 9
4 References ...................................................................................... 11

1 21st contribution see Stuttgarter Beiträge zur Naturkunde, Serie A (Biologie) 681 (2005).
1 The genus *Monocyphoniscus* Strouhal, 1939

Diagnosis given by Strouhal (1939): Dorsal part of cephalothorax with numerous small tubercles; one ommatidium present; pereion-tergites with 6+6 longitudinal ridges consisting of rows of tubercles; third pleon-tergite with one big median tubercle; pleon-tergites IV and V and telson with two bigger tubercles; tergites without honeycomb-like microstructure.

Strouhal contrasts this diagnosis with the one of *Tricyphoniscus* Verhoeff, 1936, described also from Bulgaria; *Tricyphoniscus* differs from *Monocyphoniscus* by lacking ommatidia, the pereion-tergites bearing only 4+4 longitudinal ribs, the pleon-tergites IV and V having one single median tubercle and the tergites being equipped with a honeycomb-like microstructure.

Formally this diagnosis separates *Monocyphoniscus* from all other genera of the Haplophthalminae. It seems, however, doubtful whether diagnostic differences between the genera of this group should be based on details of the tuberculation only. Male characters of pleopods are very similar and uniform inside the whole group, and the differences of tuberculation appear in a number of cases rather to reflect specific than generic differences. In my view the species ascribed to *Monocyphoniscus* would perfectly fit into the genus *Cyphoniscellus* Verhoeff, 1901, if the diagnosis of this genus would be slightly enlarged. A careful re-evaluation of the genera of the Haplophthalminae, including the sophisticated use of molecular data, would be advisable. This is, however, outside the scope of the present article, so in the present state of knowledge I leave the genus *Monocyphoniscus* untouched.

I establish a number of new specific synonymies (see next chapter), and I suspect that also the two species *M. babadagensis* (Radu, 1965) (= *Cyphoniscellus b.*) from Romania and northeastern Bulgaria and *M. loritzi* Karaman & Karaman, 1966 from Macedonia (southern former Yugoslavia) are synonyms of *M. bulgaricus* (compare Radu 1965, Karaman & Karaman 1966). The differences towards *M. bulgaricus*, indicated in the descriptions of these two species, can either be due to individual variability, or, concerning the male characters, have to do with the age and size of the specimens (see description below). However, since no type material of *M. babadagensis* and *M. loritzi* was available for examination I leave these questions open.

The genus *Kosswigius* Verhoeff, 1941 is an unavailable name since no type species has been designated. *Kosswigius caniensis* Vandel, 1958 has been transferred to *Monocyphoniscus* by Vandel (1968). The species *Kosswigius delattini* Verhoeff, 1941 and *Kosswigius bilselii* Verhoeff, 1941 are considered synonyms of *Monocyphoniscus bulgaricus*, so the genus name *Kosswigius* can no longer be applied for a valid species.

**Abbreviations**

| SMNS       | Staatliches Museum für Naturkunde Stuttgart, Germany |
| ZSM       | Zoologische Staatssammlung Munich, Germany |

**Acknowledgments**

The following persons have donated isopod material for this revision: Dr. S. Andreev (Sofia/Bulgaria), Dr. F. Erhard (Enzklosterle/Germany), Dr. H. Pieper (Kiel/Germany), Dr. W. Schwaller (SMNS) and Dr. S. SPFanthourakis (Patras/Greece). Dipl.-Biol. S. Friedrich (ZSM) sent type material for reexamination. Dr. K. Wolf-Schwenninger and S. Leidenroth (both SMNS) operated the SEM, M. Pallmann (SMNS) prepared the microphotograph and J. Reibnitz and Dr. H.-P. Tschorsnig (both SMNS) edited the SEM-
photographs. Dr. S. Taiti (Florence/Italy) reviewed an earlier draft of the present paper and made valuable suggestions to improve the manuscript. To all of them I wish to express my sincere thanks.

2 Monocyphoniscus bulgaricus Strouhal, 1939


Kosswigius caniensis (n. syn.): Vandel 1958: 85, figs. 2A–B, 3A–B.


Kosswigius bilselii (n. syn.): Verhoeff 1941: 229.

Material examined


Fig. 1. Monocyphoniscus bulgaricus, δ, 4.2 mm long, NE-Greece (SMNS 2368), micro-photograph, dorsal view. – Scale: 0.5 mm.

Description

Maximum dimensions: 4.2 × 1.6 mm.

Coloration: Without pigmentation, ommatidium with dark pigment.

Cuticular structures: Head dorsally with 5–6 pairs of paramedian tubercles more or less regularly placed in two rows, the frontal pair fused to a single two-pointed frontal median process, and with lateral groups of 5–6 tubercles (Fig. 3); smaller tubercles scattered inbetween these main groups. Pereion-tergites with 4 pronounced major ridges whose crests are serrated, tergites I–VI with additional 4 minor ridges laterally of the major ones (Figs. 1–2, 4–5). Pleon-tergite III with huge single tubercle which extends posteriorly beyond the hind margin of the tergite, pleon-tergite IV with two small tubercles, tergite V and telson with pairs of faint tubercles (Figs. 1–2, 4). Without honeycomb structure on tergites, hairy scales give a furry appearance to the surface, which is covered with many humus particles.

Figs. 2–3. Monocyphoniscus bulgaricus. – 2. Same specimen as in Fig. 1. 3. ♂, 4.0 mm long, same locality, drawing based on a SEM-photograph.
Figs. 6–7. *Monocyphoniscus bulgaricus*, SEM-photographs of air-dried specimen, ♂, 4.0 mm long, NE-Greece (SMNS 2368). – 6. Antennal flagellum. 7. Pereiopod I. – Scales: 0.1 mm.
Head with semicircular or trapezoidal side-lobes (also in the specimens from Bulgaria) (Fig. 3), not triangular as in the illustration of STROUHAL (1939: 196, fig. 3), which seems to be a steeply angled view; one pigmented ommatidium; median lobe with two-pointed process, surpassing side-lobes. Pereion-epimera and pronounced pleon-epimera III–V see Figs. 1–2. Telson with truncated apex as in most Haplophthalminae (Figs. 1–2). Antennal flagellum with long terminal brush of sensory hairs (Fig. 6). Male pereiopod I see Fig. 7; pereiopod VII frontally with scale bands of water conducting system (Fig. 8); male carpus VII enlarged in adult specimens, caudally with a field of elongated scales which may function as an anti-slide pad during copulation (Figs. 9–10); in juvenile specimens the carpus VII is not enlarged (Fig. 8). Male pleopod-exopodite I of usual axe-shape (Fig. 11), endopodites I and II see Figs. 12–13.

Recorded distribution (see map Fig. 14)
Southeastern Bulgaria (STROUHAL 1939; VANDER 1965; ANDREEV 1972, 2002); northeastern Greek mainland (material examined); northeastern Aegean, island Lésvos (SCHMALFUSS 1999 as Kosswigius delattini, material examined); southern Peloponnese (material examined); central Aegean, island Ándros (SPENTHOURAKIS 1994 as M. caniensis); island Antikíthira NW of Crete (SPENTHOURAKIS 1993 as M. caniensis); Crete (VANDER 1958 as Kosswigius caniensis, VANDER 1968 as M. caniensis, SCHMALFUSS et al. 2004 as M. caniensis); northwestern Turkey (VERHOEFF 1941 as Kosswigius delattini and K. bilseii, VANDER 1980 as Kosswigius delattini). If the suspected synonymy of Monocyphoniscus loritzi and M. babadagensis with M. bulgaricus is correct the species occurs also in southern former Yugoslavia and all along the Bulgarian and Romanian coast of the Black Sea.
Figs. 9-10. *Monocyphoniscus bulgaricus*, SEM-photographs, critical point preparation, adult ♂, 4.2 mm long, NE-Greece (SMNS 2368), left (9) and right (10) pereiopod VII, caudal sides. – Scales: 0.2 mm.
3 Remarks

The individual variability, the age-depending differences in the structure of the 7th male pereiopod and the comparatively wide distribution of this species might have been the reason for the fact that it was probably described six times. If *M. babadagensis* and *M. loritzi* are synonyms of *M. bulgaricus* the species is distributed all over southeastern Europe and western Turkey. This distribution area seems to be autochthonous; if it would be due to anthropogenous transportation the species should be expected to be found erratically in other countries as it is the case in

Fig. 14. Records of *Monocyphoniscus bulgaricus* (●); the records with a question mark (●?) refer to *M. loritzi* from Skopje (southern former Yugoslavia) and *M. babadagensis* from the Black Sea coast of Bulgaria and Romania, whose synonymy with *M. bulgaricus* is suspected.
Haplophthalmus danicus. The species is present on quite remote islands of the Aegean (e.g. Antikithira between Peloponnese and Crete), so it can be concluded that it has populated the region already in the upper Tertiary (Miocene, ± 10 million years ago) when the Aegean was still coherent mainland (compare SFENTHOURAKIS et al. 1999: 391).

Monocyphoniscus bulgaricus has often been found in caves, but it is obviously not an obligatory troglobiont, since it is just as well present in deeper leaf-litter and humus layers outside caves.

Two females of 4 mm length from Crete (Élos, SMNS 2740) have both 9 embryos in their marsupia.

The closest relatives of Monocyphoniscus bulgaricus should be found among the species of the genera Cyphoniscellus, Tricyphoniscus and Vardaroniscellus (see discussion on generic diagnosis, for bibliographies see SCHMALFUSS 2003).

4 References


Isopoda, Oniscoidea, Styloniscidae) suivie de considérations sur les voies de migration de certaines lignées d’isopodes terrestres. – Annales de Spéléologie 23: 621–632.


Author’s address:
Dr. HELMUT SCHMALFUSS, Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany; e-mail: schmalfuss.smns@naturkundemuseum-bw.de